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We present a lattice model of a system of predators of five kinds, competing for prey. The predators are
grouped in packs and characterized by two parameters—the energy spent on hunting and energy gained by the
kill. The success of hunting depends on the actual competition among predators found near a prey. We
determine via Monte Carlo simulations the numbers of predators of each kind as a function of time and the
distribution of the size of their packs. We show that the ratio of the energy spent by the competing predators
determines their fate. The energy gain plays only a secondary role. We show also that the system self-organizes
itself into groups of predators living in well defined packs, which size depends on the energy spent. The most
preferred size dependence on the energy spent follows a very simple power law. We present also a mean-field-
type approach to the problem and we discuss the differences in the results obtained by the two methods,
showing in particular, that the simulation approach produces more reliable results.
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I. INTRODUCTION

The dynamics of interacting species has attracted a lot of
attention since the pioneering works of Lotka �1� and Volt-
erra �2�. They showed, in a mean-field like approximation,
that simple prey-predator models may have limit cycles dur-
ing which the populations of both species have periodic os-
cillations in time. Since then, a lot of activities have been
devoted to the study of different classes of prey-predator
models. With the rapid development of the field of “com-
plexity” �5,6�, it was soon recognized that prey-predator pro-
vides simple examples of population dynamic models exhib-
iting emergent properties or self-organization. It is then
natural to study such problems within the framework of sta-
tistical mechanics. Moreover, it has been recognized �see
�3,4� and references therein� that simple mean-field like ap-
proximations were not always sufficient and that is was im-
portant to consider extended models. Indeed, the stochastic
aspect of the dynamics as well as the use of discrete vari-
ables may play an important role �7–9�. These ingredients are
included in the so called individual agents based lattice mod-
els �IBM�. Generally speaking, several generic questions can
be asked when studying the dynamics of predator-prey sys-
tems. One is the explanation of the possible oscillations in
the temporal evolution of the densities of prey and predators,
as well as of the correlations between them. Another one
concerns the study of the possible steady states at which a
predator-prey system eventually arrives. As a function of the
control parameter of the problem, a phase diagram can then
be drawn, characterizing the different states �or phases� in
which the system can be found. Yet another is the study of a
system in its transient regime to see the role of the param-
eters of the model in determining its fate.

Many different mechanisms, associated with several dif-
ferent control parameters, can be taken into account. For ex-
ample, the following scenarios in describing population dy-
namics have been considered in the literature:

�1� seasonal hunting of the predators �10,11�,
�2� predating within a certain region �12,13�,
�3� predators and prey which may exhibit different

strategies, like looking for prey and/or avoiding predators
�11,13,14�,

�4� including, genetic heritage and accumulation of
diseases into the lattice predator-prey models �15�.

In this paper, we consider a new aspect of prey-predator
dynamics, which is present in all such systems, but has not
been yet considered, namely the problem of competitive
hunting �16,17�. In the system we consider, one has only one
type of prey, which is abundant enough to be always present
independently of the hunting abilities of the predators. Popu-
lations of predators Pi of several kinds are hunting according
to some rules and each predator family is characterized by
two properties, its hunting ability hi and its metabolic rate mi
�a more precise definition of the hunting rules and of hi and
mi will be given in Sec. II�. The predators of family i, located
at time t at site r� are hunting in packs of size ni�r� , t�. The
problem we would like to approach in this paper is to study
the influence of the two above parameters on the dynamics
of the system.

The probability distribution of group sizes in a given fam-
ily is an important element for understanding the evolution
of grouping. It may happen that a particular size is selected
as the result of a competition between cost and benefits.

We shall find that in the long time limit, for each family of
predators a characteristic size is selected. Moreover, these
optimal sizes depend upon the metabolic rate mi as a power
law, manifestation of some self-organization in the system.

We are aware that many factors are not present in our
model, like, e.g., developing hunting skills by the predators,
seasonal hunting, etc. Inclusion of these factors into the
model is, of course, possible, however at the cost of increas-
ing the number of its parameters. Such a procedure could be
justified, or even desirable, in a biological study. However in
order to grasp the most important features of the problem, we
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have kept the number of parameters minimal.
The paper is organized as follows. The model is defined in

Sec. II. The results obtained by the Monte-Carlo simulation
are discussed in Sec. III and compared with the ones ob-
tained by a mean-field like approximation. Finally, conclud-
ing remarks are given in Sec. IV.

II. MODEL

We consider a square lattice of dimensions L�L. Each
lattice site could be either empty or occupied by one species
�predator or prey�. There is just one type of prey on which all
predators feed. To make the model as simple as possible �but
not simpler, following the advice of Einstein� the prey could
not go extinct. It is always, although not on all sites, avail-
able to the predators. There are five types of predators and
each of them is characterized by two parameters—hunting
ability �h�, which describes its skills at hunting, chasing
away competing predators, etc., and by its metabolic rate �m�
which again encompasses many factors, like energy spent
while chasing, breeding, etc. These two parameters are
sometimes called by biologists �16� b �benefits� and c �cost�.

All animals �predator and prey� are grouped into herds or
packs �predators�, which are the basic entities we use. Since
the prey always exist, the size of prey herds is unimportant.
The predators’ pack sizes are at the beginning of the simula-
tion given random values between 2 and 10. The groups of
animals may move randomly on the lattice and the number
of predators in each pack could change in time, depending
whether the pack was successful in finding prey and in the
competition with other predators. When there are several
predators packs around the same prey, there will be a com-
petition in the kill. The packs with the highest h and largest
in numbers will have of course the most benefits from the
kill. This idea is formalized in Eq. �1�.

The algorithm we use has the following form:
�1� A group of animals is randomly selected,
�2� A move to an empty site in the Moore neighbor-

hood �8 sites on the square lattice� is attempted. If not suc-
cessful, the program returns to �1�. Otherwise the move is
realized,

�3� After moving all groups of animals we look for
predator packs. The new size of the pack of predators i at site
r� is updated according to the formula

ni�r�,t + 1� = ni�r�,t� − I�ni�r�,t�mi� + I��i

S
� , �1�

where

�i = ni�r�,t�hi, �2�

and S is the weighted sum of all predators �at sites R� � par-
ticipating in the kill of the same prey �at site r�p� as the pack
ni. Formally we may write it as

S � S�r�p� = �
i=1

5

�
R� �V�r�p�

ni�R� ,t�hi. �3�

I�x� means taking the nearest integer of x and V�r�p� denotes
the four sites constituting the neighborhood of r�p. One can

therefore say that the gain in the kill obtained by a given
predators pack is proportional to its weighted hunting ability
and the size of the pack; the weighting is done with respect
to all packs around that prey. The cost of hunting is also
proportional to the size of the pack and to the appropriate m.
It is clear that when there is no prey around a given pack of
predators, the last term in Eq. �1� is missing and the size of
the pack could only go down.

�4� As usual, after updating, on the average, all packs
of predators, one Monte Carlo step �MCS� is completed.

Although simple, this nonlinear model will exhibit com-
plex behavior.

FIG. 1. Time dependence of the number of predators. h=0.1, �a�
m=0.02, 0.04, 0.06, 0.08, 0.10, �b� m=0.06, 0.08, 0.10, 0.12, 0.14,
�c� m=0.10, 0.12, 0.14, 0.15, 0.18.
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The model has the following parameters divided in two
groups. The constant group is as follows:

�1� L=50, linear size of the system,
�2� P=5, five group of predators,
�3� initial concentrations of prey �0.1, i.e., one site out

of ten is occupied by prey� and of all predators �0.6�.
The variable group is as follows:

�1� hi, hunting ability of predators i,
�2� mi, metabolic rate of predators i.

For a linear size equal L=50, no finite size effects are
present �for the range of metabolic rates considered, see be-
low� as checked by investigating the properties of larger lat-
tices. Such a size is a good compromise between computer
efficiency and stability of the results. For too small lattice
sizes one may face the risk of extinction of population due to
statistical fluctuations �18�.

We have decided to choose P=5 since larger values are
rather improbable in view of the biological data �16,19�. On
the other hand we did not want to operate on a system where
after eliminating one competitor only one or two will be left.
We have however checked that taking P=3 does not change
in any significant way our results. In particular the maxima
of the pack size distribution follows the same law �see be-
low� that for P=5.

It is clear that the sum of the densities of the predators and
prey should be smaller than one, otherwise there would be no
room for movements. With the choice we made, the initial
concentration of each type of predators is slightly higher than

that of prey. This may seem unrealistic but since the number
of prey remains unchanged, the density of predators quickly
drops below that of prey. Choosing larger concentrations of
prey �like 0.2 instead of 0.1� leads to slower extinction of
predators with high m. Increasing or decreasing the initial
concentration of predators does not change the behavior in
any significant way since the internal dynamics keeps the
system in balance.

We have in general let the system evolve till 2.5�104

MCS, although to check the stability we have extended the
runs in some cases till 1�105 MCS. Averaging was done
over 100 independent runs.

We have recorded the following quantities, time depen-
dence of the number of predators of each type and the dis-
tribution of the size of the packs at different time moments.

III. RESULTS

In Figs. 1�a�–1�c� the time dependence of the number of
each kind of predators is presented. The predators have the
following characteristics: h=0.1 for all types of them and
m=0.02, 0.04, 0.06, 0.08, 0.10, respectively for the five types
of predators in Fig. 1�a�, while in Fig. 1�b�, m=0.06, 0.08,
0.10, 0.12, 0.14, and finally in Fig. 1�c�, m=0.10, 0.12, 0.14,
0.15, 0.18. It is clear from the Fig. 1, that the predators with
the lowest m are better off than the others. In particular those
with the highest m would be eliminated first. By comparing
the results presented in Figs. 1�a�–1�c�, we conclude that the

FIG. 2. Distribution of the pack sizes. m=0.02. Upper left, h=0.1; upper right, h=0.2; lower left, h=0.3; lower right, h=0.4.
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survival of predators is essentially governed by two rules.
For short times, the survival depends mainly on the respec-
tive ratios �ij =mi /mj and is only very weakly dependent on
the smallest value of 	mi
. However, for longer times, the
decay of survival significantly depends not only on the ratios
�ij but also upon the smallest value of 	mi
.

In Figs. 2�a�–2�d� we show the distribution of the pack
sizes, at different time moments, for the case when the preda-
tors have all the same value of m �=0.02� and differ by their
hunting ability; h=0.1, 0.2, 0.3, 0.4, 0.5. We present four
graphs since the fifth one �h=0.5� looks very much like the
one for h=0.4. We observe that, regardless of the value of h,
there is always a preferred size of the pack, and that it is
located at about 24 animals. Hence all competing predators
prefer similar sizes of their packs. Initially there is a long tail
in the distribution, indicating the presence of smaller packs,
but with time the peak at 24 grows up at the expense of
smaller packs. The height of the maximum tells us how
many such packs, hence indirectly also predators of a given
type, exist in the system. It is natural that with growing hunt-
ing ability the number of such skillful predators grows too.
Predators with no hunting ability at all �h=0� are, of course,
eliminated quickly.

Figures 3�a�–3�d� show the situation when the competing
predators have the same hunting ability �h=0.1� but different
m=0.02, 0.04, 0.06, 0.08, and 0.10. Here also we present
four graphs, since the case m=0.10, in the scale we use,
shows just a small, disappearing in time, bump. Now the

preferred pack distribution depends very much on the type of
predators. Those with low m hunt in rather well defined and
large packs. The peaks are sharp, tall, and practically there
are no packs larger than the preferred ones. When the m
grows, the most often found size of the pack goes down,
becomes smaller and its left-hand tail becomes more thick.
All this shows that larger animals, which spent more energy,
hunt in smaller groups, which also may become quite small,
and that the total number of such predators is smaller than
their smaller in size competitors.

In Fig. 4 we present the distribution of the pack sizes for
the five types of predators present in the system. The meta-
bolic rates are equal 0.02, 0.04, 0.06, 0.08, and 0.10. As can
be seen on the last graph, the predators with the highest
metabolic rates disappeared from the system.

Apart from the two cases presented above, constant m and
varying h and vice versa, we have also considered the case of
predators differing in both parameters. We have attributed
the largest m to the predators with the highest h. Such a
situation could, e.g., correspond to lions �high values of both
parameters� and hyenas �low values�. Both live in the same
ecosystem and feed on similar prey �17�. Lions have larger
body size hence they use more energy, but they are also able
to chase away hyenas from their kill. While the lions hunt
generally in groups of just a few animals, hyenas’ packs
count 15–20 �16�. In the above case we have found a behav-
ior quite similar to the case when the h’s were equal. This
demonstrates the crucial role, in determining the dynamics of

FIG. 3. Distribution of the pack sizes. h=0.10. Upper left, m=0.02; upper right, m=0.04; lower left, m=0.06; lower right, m=0.08.
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competing predators, played by the ratio of their m, or en-
ergy spent.

Finally, in Fig. 5 we present the dependence of the size of
the preferred pack �ps� on the values of m. It shows a power-
type behavior, which could be very well fit by the equation

ps =
0.49 ± 0.01

m
. �4�

The explanation of this kind of power-law behavior, as
well as the stronger dependence of the dynamics of the sys-
tem on m than on h, could be found in the structure of Eq.

�1�, which determines the dynamics. The interplay between
two opposite factors involving size of the herd, growth be-
cause of a better chance to catch prey �proportional to the
size of the herd�, but decrease due to energy spending �also
proportional to the size�, produces the effect of appearing of
a rather sharp maximum for the pack size. The power law
character of the dependence extends over two decades. Be-
cause of the restricted size of the system we have shown
packs up to size of 500. The presented data should be suffi-
cient to make our point, that the dependence has indeed a
power type character.

Although in our model there are no direct interactions
among the predators packs, the predators of the same type
have a tendency to move within an area in which they are in
majority �see Fig. 6�, hence one could say that the predators
of one type try to avoid other types.

It is also possible to treat the problem analytically within
a mean-field approach �MFA�, in which the system is sup-
posed to be spatially homogeneous. Denoting by ni the size
of a pack of predators of type i, one can write the following
set of difference equations

FIG. 4. Distribution of the pack sizes of the five types of preda-
tors �marked by 1,2 , . . . ,5� for three time moments. Top t=500
MCS, middle t=1500 MCS, and bottom t=2500 MCS. h=0.10.

FIG. 5. Preferred size of the pack versus m on a doubly loga-
rithmic scale. Solid line is a fit �see Eq. �4��.

FIG. 6. Positions of the two most numerous types of predators’
packs and prey herds after 10 000 MCS. h=0.1, m=0.02 �Pred1�,
0.04 �Pred2�.
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ni�t + 1� = ni�t� − ni�t�mi + �i�t�/S �i = 1, . . . ,5� , �5�

which in the continuous time limit turns into a set of five
coupled nonlinear differential equations

dni�t�
dt

= − ni�t�mi +
ni�t�hi

S
. �6�

It is not possible to give an analytical solution to this system
of differential equations. However, they can be solved nu-
merically using the Runge-Kutta method. In Fig. 7, the time
dependence of the five groups of predators for the case of
h=0.1 and m=0.02, 0.04,0.06, 0.08, and 0.10, respectively is
given and could be compared with Fig. 1�a�. In the long time
limit, only one type of predator survives, the one with the
smallest metabolic rate. In this particularly simple case the
stationary state solution, ns,1, of Eq. �6� for the surviving
predators gives

ns,1 = �m1�−1, �7�

which differs from Eq. �4� only by a prefactor.
Generally, more than one type of predators may survive

and the stationary state conditions for ns,i=limt→�ni�t��0,
read

�
j=1

5

�
R� �V�r�p�

nj�R� ,t�hj =
hi

mi
. �8�

The simplest case is when only one of the ns,j is nonzero, this
is the case investigated above. The more general case is
when several ns,j, j= i1 , i2 , . . . , iM are not zero. Then one has

hj

mj
= K, j = i1,i2, . . . ,iM , �9�

where K is a constant. It follows that Eq. �8� is of the form

�i1
ns,i1

hi1
+ �i2

ns,i2
hi2

+ ¯ + �iM
ns,iM

hiM
= K , �10�

where �ij
� �0,1 ,2 ,3 ,4�. As the right hand side is indepen-

dent of the h’s, the solution should be of the form

ns,ij
=

K�ij

�ij
hij

=
�ij

�ij
mij

�
1

mij

, �11�

where the coefficients �ij
are some constants. Thus power

law behavior is also obtained in mean-field approximation
but under some restrictive conditions. Note however that the
prefactors are not the same in mean-field and Monte Carlo
simulations due to the following reason. Since in the MFA by
definition all packs of a given type of predators have the
same size at a given time, there is no competition within the
same group. In the Monte Carlo approach there are always
other predators, as well as predators of the same type but in
packs of a different size.

We have investigated also the extinction time as a func-
tion of m, and it turns out that again the most important is the
ratio of the m’s of the competing predators. Predators with a
given value of m may live practically forever �provided it is
not very high, like 0.1�, if this is the lowest m in the system,
but they may be eliminated quite soon if this is one of the
highest.

A plot of the dependence of the height of the ps as a
function of h produces a saturating curve, roughly corre-
sponding to a hyperbolic tangent.

IV. CONCLUSIONS

We have presented a simple, yet showing complex behav-
ior, model of competing predators and everlasting prey.
Predators are characterized by two tunable parameters, en-
ergy spent �called here metabolic rate m� and energy gains
�hunting ability h�. The problem of dynamics of a system
depending on those two parameters attracted interest of bi-
ologists, mostly working in Reserve Parks �16,17�, but so far
not of the physicists. In constructing the model we have as-
sumed, according to the biological data, that predators live in
packs, and we have determined, via Monte Carlo simula-
tions, how the distribution and the number of predators de-
pend on those two parameters. We have found that the pre-
ferred size of the pack depends strongly on the ratio �and
also value� of the m parameters, but not on h. It should be
stressed, however, that the role of the hunting ability is not
negligible. It is true that the prey is always available �on
occupied sites�, but the distribution of the kill is made ac-
cording to the hunting abilities of the participating predators.
It is not therefore obvious that in the Monte-Carlo simula-
tions the hunting ability would play a secondary role �see
however the discussion concerning Fig. 2�. In the MFA it is
as important for the survival of the species as the second
parameter, i.e., the metabolic rate.

Predators spending more energy, hence presumably hav-
ing a larger body, will live in smaller packs, and will be less
numerous than competing with the predators of a smaller
body mass. This kind of situation is supported by field data
�16�, where similar figures showing distribution of pack sizes
for the African wild dog has been presented.

We have shown that the preferred size of the pack scales
with a simple power law. The system clearly self-organizes;
starting from a random distribution of the pack sizes and
governed by one simple equation, it arrives at an organized

FIG. 7. Time dependence of the five types of predators as cal-
culated from Eq. �6�. h=0.1 for all predators.
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state where most of the predators live in well defined groups
and the size of the group is characteristic for the predator.
Scaling in the size distribution of animal groups have also
been found, however not in the predator-prey systems, by
Bonabeau et al. �20�.

We have also shown the results obtained analytically, via
mean-field approach. They exhibit a similar dependence, i.e.,
scaling, of the size of the packs on the metabolic rate. As
could be expected, neglecting fluctuations in the MFA ap-
proach produces differences with respect to analogous simu-
lation results. In the MFA, for the range of the m and h
parameters we have considered in the Monte Carlo approach,
we have arrived at the asymptotic situation in which only the
predators with the lowest metabolic rate survived. If we im-
pose the condition that more than one type of predators
should survive, this implies that the ratios hi /mi of each of
the surviving species should be equal to the same constant K.

This constraint is not present for the lattice-based case, as
shown by our Monte Carlo simulations, where more than one
type of predators were living in the stationary state for dif-
ferent values of the ratio hi /mi. Clearly the results obtained
from Monte Carlo are closer to biological data, hence they
are more reliable than those obtained from the MFA.

Although our model is quite simple, it possesses rich so-
lutions. It should be also noted that our model shows certain
robustness since the dynamics depends rather weakly on par-
ticular values of either m or h �of course within certain lim-
its�. This seems to be correct, since one could not really
expect to find the values of the parameters corresponding to
a real life situation.

This work was partially supported by the Swiss National
Science Foundation.
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